Multiplex PCR Targeted Amplicon Sequencing (MTA-Seq): Simple, Flexible, and Versatile SNP Genotyping by Highly Multiplexed PCR Amplicon Sequencing

نویسندگان

  • Yoshihiko Onda
  • Kotaro Takahagi
  • Minami Shimizu
  • Komaki Inoue
  • Keiichi Mochida
چکیده

Next-generation sequencing (NGS) technologies have enabled genome re-sequencing for exploring genome-wide polymorphisms among individuals, as well as targeted re-sequencing for the rapid and simultaneous detection of polymorphisms in genes associated with various biological functions. Therefore, a simple and robust method for targeted re-sequencing should facilitate genotyping in a wide range of biological fields. In this study, we developed a simple, custom, targeted re-sequencing method, designated "multiplex PCR targeted amplicon sequencing (MTA-seq)," and applied it to the genotyping of the model grass Brachypodium distachyon. To assess the practical usability of MTA-seq, we applied it to the genotyping of genome-wide single-nucleotide polymorphisms (SNPs) identified in natural accessions (Bd1-1, Bd3-1, Bd21-3, Bd30-1, Koz-1, Koz-3, and Koz-4) by comparing the re-sequencing data with that of reference accession Bd21. Examination of SNP-genotyping accuracy in 443 amplicons from eight parental accessions and an F1 progeny derived by crossing of Bd21 and Bd3-1 revealed that ~95% of the SNPs were correctly called. The assessment suggested that the method provided an efficient framework for accurate and robust SNP genotyping. The method described here enables easy design of custom target SNP-marker panels in various organisms, facilitating a wide range of high-throughput genetic applications, such as genetic mapping, population analysis, molecular breeding, and genomic diagnostics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadruplex genotyping of F5, F2, and MTHFR variants in a single closed tube by high-resolution amplicon melting.

BACKGROUND Multiplexed amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, asymmetric PCR, or allele-specific PCR; however, correct differentiation of homozygous mutant and wild-type samples by melting temperature (T(m)) analysis requires high-resolution melting analysis and controlled reaction conditions. METHODS We designed 4 amplicons b...

متن کامل

A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with gen...

متن کامل

DUDE-Seq: Fast, flexible, and robust denoising for targeted amplicon sequencing

We consider the correction of errors from nucleotide sequences produced by next-generation targeted amplicon sequencing. The next-generation sequencing (NGS) platforms can provide a great deal of sequencing data thanks to their high throughput, but the associated error rates often tend to be high. Denoising in high-throughput sequencing has thus become a crucial process for boosting the reliabi...

متن کامل

Barcoded primers used in multiplex amplicon pyrosequencing bias amplification.

"Barcode-tagged" PCR primers used for multiplex amplicon sequencing generate a thus-far-overlooked amplification bias that produces variable terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing data from the same environmental DNA template. We propose a simple two-step PCR approach that increases reproducibility and consistently recovers higher genetic diversity in pyro...

متن کامل

Targeted RNA-Sequencing with Competitive Multiplex-PCR Amplicon Libraries

Whole transcriptome RNA-sequencing is a powerful tool, but is costly and yields complex data sets that limit its utility in molecular diagnostic testing. A targeted quantitative RNA-sequencing method that is reproducible and reduces the number of sequencing reads required to measure transcripts over the full range of expression would be better suited to diagnostic testing. Toward this goal, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018